29 research outputs found

    Modulation of excitatory synaptic transmission in the rat spinal dorsal horn

    Get PDF
    Modulation of excitatory amino acid (EAA)-mediated synaptic transmission in the rat spinal dorsal horn by the cyclic adenosine 3[superscript]\u27,5[superscript]\u27-monophosphate (cyclic AMP)-dependent second-messenger system and by the activation of metabotropic glutamate receptors has been investigated by using sharp-electrode voltage recording in the transverse spinal cord slice preparation and whole-cell voltage-clamp recording from acutely dissociated dorsal horn neurons;The elevation of intracellular concentration of cyclic AMP by membrane permeable analog, 8-Br cyclic AMP, and application of phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), depolarize rat spinal dorsal horn neurons. In addition they enhance presumed monosynaptic excitatory postsynaptic potentials evoked in the substantia gelatinosa neurons by orthodromic stimulation of a lumbar dorsal root and the responses of dorsal horn neurons to specific agonists of glutamate receptor subtypes (N-methyl-D-aspartic acid (NMDA), [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid (QA) and kainic acid (KA)). Specific protein kinase inhibitor (PKI[subscript]5-24), that binds with high affinity to the active catalytic subunit of cyclic AMP-dependent protein kinase, prevented the 8-Br cyclic AMP-induced depolarization of the resting membrane potential and the potentiation of NMDA responses of dorsal horn neurons. Direct intracellular administration of cAMP or catalytic subunit of protein kinase A resulted in enhanced responsiveness of DH neurons to NMDA, whereas heat-inactivated cPKA did not modulate NMDA-induced currents;In freshly isolated DH neurons (±)-trans-1-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) and its active enantiomere 1S,3R-ACPD, the agonist of metabotropic glutamate receptor increased the whole-cell current responses to Glu, AMPA, and NMDA. The responses to KA were little affected. The enhancing effect was long-lasting (up to 75 min after the onset of application of ACPD) and was in a proportion (42%) of DH neurons preceded by a transient depression. 2-Amino-3-phosphono-propionic acid (L-AP[subscript]3), a putative antagonist of metabotropic glutamate receptor, exerted little effect on responses of DH neurons to AMPA itself, but reduced or prevented the enhancing effect of trans-ACPD;These results suggest that in the rat spinal dorsal horn the activation of the adenylate cyclase-cyclic AMP-dependent protein kinase system and metabotropic glutamate receptor may be involved in the regulation of the sensitivity of postsynaptic excitatory amino acid (NMDA, AMPA, KA) receptors and primary afferent neurotransmission, including nociception

    Catechol estrogens stimulate insulin secretion in pancreatic β-cells via activation of the transient receptor potential A1 (TRPA1) channel

    Get PDF
    Estrogen hormones play an important role in controlling glucose homeostasis and pancreatic β-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic β-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic β-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases

    Low-Impact Ampakine CX1739 Exerts Pro-Cognitive Effects and Reverses Opiate-Induced Respiratory Depression in Rodents

    Get PDF
    © 2024 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/AMPA-glutamate receptors (AMPARs) are expressed throughout the CNS and mediate the majority of fast excitatory synaptic transmission. Ampakines are orally available small molecules that bind allosterically to AMPARs and enhance excitatory currents elicited by the endogenous agonist glutamate. In preclinical studies, ampakines are effective in ameliorating symptoms in a battery of neurodegenerative and neuropsychiatric diseases in which excitatory transmission is compromised. However, the development of ampakines as medicines was slowed by the emergence of neurotoxicity and seizures in rodents due to some ampakines. Here, we describe the preclinical pharmacology of a novel ampakine, N-methyl-N-(tetrahydro-2H-pyran-4-yl)benzo[c][1,2,5] oxadiazole-5-carboxamide (CX1739), that does not induce seizures in animals or humans at efficacious doses. CX1739 dose-dependently enhanced long-term potentiation in vivo in rats, a process thought to be a molecular substrate of learning and memory. Correspondingly, CX1739 dose-dependently enhanced performance in assays that probed multiple aspects of cognition—the novel object recognition test, the win shift radial arm maze, and the five-choice serial reaction time task in rats. CX1739 also abrogated amphetamine-induced locomotor activity, demonstrating that it may be given in conjunction with stimulants for pro-cognitive gains while mitigating the side effects of stimulant-based ADHD medications. CX1739 also rapidly reversed opioid-induced respiratory depression. While efficacy in these tests occurred at doses of 0.03–18 mg/kg, there were no adverse events detected in safety studies in rats up to 2000 mg/kg. These preclinical findings suggest that CX1739 can be translated safely into the clinical setting to potentially treat dementia, neuropsychiatric disorders, and the life-threatening complication of opiate-induced suppression of endogenous inspiratory breathing rhythms.Peer reviewe

    Using heterogeneous camera-trapping sites to obtain the first density estimates for the transboundary Eurasian lynx (Lynx lynx) population in the Dinaric Mountains

    Get PDF
    Estimating abundance of wild animal populations is crucial for their management and conservation. While spatial capture-recapture models are becoming increasingly common to assess the densities of elusive species, recent studies have indicated potential bias that can be introduced by unaccounted spatial variation of detectability. We used camera-trapping data collected in collaboration with local hunters from a transnational population survey of the Eurasian lynx (Lynx lynx) in Slovenia and Croatia, to provide the first density estimate for the threatened Eurasian lynx population in the Northern Dinaric Mountains. Population density was 0.83 (95% CI: 0.60-1.16) lynx/100 km(2), which is comparable to other reintroduced Eurasian lynx populations in Europe. Furthermore, we showed that baseline detection rate was influenced by the type of site used, as well as by sex of the individual and local behavioural response. Scent-marking sites had on average a 1.6- and 2.5-times higher baseline detection rate compared to roads and other locations, respectively. Scent-marking behaviour is common for several mammals, and selecting sites that attracts the targeted species is used to increase detection rates, especially for rare and cryptic species. But we show that the use of different location types for camera trapping can bias density estimates if not homogenously distributed across the surveyed area. This highlights the importance of incorporating not only individual characteristics (e.g., sex), but also information on the type of site used in camera trapping surveys into estimates of population densities

    Hydrochloride Salt of the GABAkine KRM-II-81

    Get PDF
    Imidazodiazepine (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a potentiator of GABAA receptors (a GABAkine) undergoing preparation for clinical development. KRM-II-81 is active against many seizure and pain models in rodents, where it exhibits improved pharmacological properties over standard-of-care agents. Since salts can be utilized to create opportunities for increased solubility, enhanced absorption, and distribution, as well as for efficient methods of bulk synthesis, a hydrochloride salt of KRM-II-81 was prepared. KRM-II-81·HCl was produced from the free base with anhydrous hydrochloric acid. The formation of the monohydrochloride salt was confirmed by X-ray crystallography, as well as 1H NMR and 13C NMR analyses. High water solubility and a lower partition coefficient (octanol/water) were exhibited by KRM-II-81·HCl as compared to the free base. Oral administration of either KRM-II-81·HCl or the free base resulted in high concentrations in the brain and plasma of rats. Oral dosing in mice significantly increased the latency to both clonic and tonic convulsions and decreased pentylenetetrazol-induced lethality. The increased water solubility of the HCl salt enables intravenous dosing and the potential for higher concentration formulations compared with the free base without impacting anticonvulsant potency. Thus, KRM-II-81·HCl adds an important new compound to facilitate the development of these imidazodiazepines for clinical evaluation

    Imidazodiazepine Anticonvulsant, KRM-II-81, Produces Novel, Non-diazepam-like Antiseizure Effects

    Get PDF
    The need for improved medications for the treatment of epilepsy and chronic pain is essential. Epileptic patients typically take multiple antiseizure drugs without complete seizure freedom, and chronic pain is not fully managed with current medications. A positive allosteric modulator (PAM) of α2/3-containing GABAA receptors (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81 (8) is a lead compound in a series of imidazodiazepines. We previously reported that KRM-II-81 produces broad-based anticonvulsant and antinociceptive efficacy in rodent models and provides a wider margin over motoric side effects than that of other GABAA receptor PAMs. The present series of experiments was designed to fill key missing gaps in prior preclinical studies assessing whether KRM-II-81 could be further differentiated from nonselective GABAA receptor PAMs using the anticonvulsant diazepam (DZP) as a comparator. In multiple chemical seizure provocation models in mice, KRM-II-81 was either equally or more efficacious than DZP. Most strikingly, KRM-II-81 but not DZP blocked the development of seizure sensitivity to the chemoconvulsants cocaine and pentylenetetrazol in seizure kindling models. These and predecessor data have placed KRM-II-81 into consideration for clinical development requiring the manufacture of kilogram amounts of good manufacturing practice material. We describe here a novel synthetic route amenable to kilogram quantity production. The new biological and chemical data provide key steps forward in the development of KRM-II-81 (8) as an improved treatment option for patients suffering from epilepsy

    Prerequisites for coexistence: human pressure and refuge habitat availability shape continental‑scale habitat use patterns of a large carnivore

    Get PDF
    Context Adjustments in habitat use by large carnivores can be a key factor facilitating their coexistence with people in shared landscapes. Landscape composition might be a key factor determining how large carnivores can adapt to occurring alongside humans, yet broad-scale analyses investigating adjustments of habitat use across large gradients of human pressure and landscape composition are lacking. Objectives Here, we investigate adjustments in habitat use by Eurasian lynx (Lynx lynx) in response to varying availability of refuge habitats (i.e., forests and rugged terrain) and human landscape modifcation. Methods Using a large tracking dataset including 434 individuals from seven populations, we assess functional responses in lynx habitat use across two spatial scales, testing for variation by sex, daytime, and season. Results We found that lynx use refuge habitats more intensively with increasing landscape modifcation across spatial scales, selecting forests most strongly in otherwise open landscapes and rugged terrain in mountainous regions. Moreover, higher forest availability enabled lynx to place their home ranges in more human-modifed landscapes. Human pressure and refuge habitat availability also shaped temporal patterns of lynx habitat use, with lynx increasing refuge habitat use and reducing their use of human-modifed areas during periods of high exposure (daytime) or high vulnerability (postnatal period) to human pressure. Conclusions Our fndings suggest a remarkable adaptive capacity of lynx towards human pressure and underline the importance of refuge habitats across scales for enabling coexistence between large carnivores and people. More broadly, we highlight that the composition of landscapes determines how large carnivores can adapt to human pressure and thus play an important role shaping large carnivore habitat use and distributions.publishedVersio

    Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat

    Get PDF
    Aim: The increasing availability of animal tracking datasets collected across many sites provides new opportunities to move beyond local assessments to enable de-tailed and consistent habitat mapping at biogeographical scales. However, integrating wildlife datasets across large areas and study sites is challenging, as species' varying responses to different environmental contexts must be reconciled. Here, we compare approaches for large-area habitat mapping and assess available habitat for a recolo-nizing large carnivore, the Eurasian lynx (Lynx lynx).Location: Europe.Methods: We use a continental-scale animal tracking database (450 individuals from 14 study sites) to systematically assess modelling approaches, comparing (1) global strategies that pool all data for training versus building local, site-specific models and combining them, (2) different approaches for incorporating regional variation in habi-tat selection and (3) different modelling algorithms, testing nonlinear mixed effects models as well as machine-learning algorithms.Results: Testing models on training sites and simulating model transfers, global and local modelling strategies achieved overall similar predictive performance. Model performance was the highest using flexible machine-learning algorithms and when incorporating variation in habitat selection as a function of environmental variation. Our best-performing model used a weighted combination of local, site-specific habi-tat models. Our habitat maps identified large areas of suitable, but currently unoccu-pied lynx habitat, with many of the most suitable unoccupied areas located in regions that could foster connectivity between currently isolated populations.Main Conclusions: We demonstrate that global and local modelling strategies can achieve robust habitat models at the continental scale and that considering regional variation in habitat selection improves broad-scale habitat mapping. More generally, we highlight the promise of large wildlife tracking databases for large-area habitat mapping. Our maps provide the first high-resolution, yet continental assessment of lynx habitat across Europe, providing a consistent basis for conservation planning for restoring the species within its former range.publishedVersio

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
    corecore